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A Numerical Study of Vector Absorbing
Boundary Conditions for the
Finite-Element Solution of
Maxwell’s Equations

V. N. Kanellopoulos and J. P. Webb -

Abstract—1In three-dimensional vector solutions to Maxwell’s

equations, boundary conditions of the Bayliss-Turkel kind can °

be used to absorb outgoing radiation. The boundary conditions
were used with curvilinear brick finite elements to analyze spher-
ical test problems for which the exact fields are known. Errors
due to incomplete absorbtion decrease as the outer boundary is
moved further away. The second-order boundary condition is
appreciably more accurate than the first-order, at the same cost.

1. INTRODUCTION

HE finite element method is an effective way of solving

Maxwell's equations numerically, particularly when di-
electric and inhomogeneous materials are present. It is, for
example, well-suited to the prediction of field intensities in
living tissue, desirable in microwave hyperthermia treatment
[1]. However, the method solves the equations in a finite
volume. On the outer boundary of the volume, conditions
must be imposed which represent the infinite free space
beyond, into which electromagnetic waves may be flowing.
One way of doing this is to couple to an integral equation on
the boundary; this leads to a hybrid method that unfortunately
lowers the sparsity of the finite-element matrices. An alterna-
tive is to use an absorbing boundary condition—a differential
equation imposed on the boundary, and solved along with the
equations within. Such absorbing conditions are only exactly
correct when the boundary is at infinity. Nevertheless, they
can be accurate enough at reasonable distances, and have the
advantage of preserving sparsity.

The simplest absorbing boundary condition amounts to no
more than the Sommerfeld radiation condition. However,
higher order conditions exist that offer greater accuracy. The
higher order forms were first developed for the scalar case
[2]. Recently, three second-order vector conditions were
presented [3]-[5]. Only one of ‘these [4] is symmetric, i.e.,
preserves the symmetry of the finite-element matrix. To date,
there has been very little numerical verification of any of
these second-order conditions. In this letter, we give numeri-
cal results obtained using the symmetric form [4], including
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an examination of the reduction of error with the distance to
the absorbing boundary.
II. THEORY

The solution to the problem is a stationary point of this
functional:

F(H) = /

vV

1
—(V x H)2 - kzuer] av

+/S [jkH? + 8(r)(V x H)?

-8(n(v-H)|ds. (1)

H is the unknown, complex, vector, magnetic field. V" is the
volume of interest and S, is a spherical surface separating V'
from the infinite volume of free-space outside. k& is the
free-space wavenumber. Subscripts r and ¢ denote the 7 and
6 — ¢ parts of a vector, respectively, where (r, 6, ¢) are
spherical coordinates based on an origin at the centre of
S, B(r) is 1/Q2jk + 2/r)e, and p, are the relative per-
mittivity and permeability, respectively. Each may be com-
plex, to represent loss, and inhomogeneous.

The second integral causes a second-order absorbing
boundary condition to hold on S, [4]. If 3(r) is replaced by
zero, the first-order boundary condition applies instead.

In order to find the stationary points of F, the volume V is
divided into curvilinear bricks known as covariant-projection
elements [6]. These bricks represent H as a mixed first-
/second-order polynomial, whose tangential part is continu-
ous from one brick to the next. They have been shown to
provide good solutions, free from the effects of spurious
modes, and make the imposition of vector boundary condi-
tions as straightforward as it is in the scalar case. The
unknowns are the covariant components of H at points
throughout ¥, and requiring that F be stationary results in a
linear matrix equation for the unknowns: Ax = b, where A
is a large, square, sparse, symmetric matrix. Solving for x
allows H to be determined at any point in V.

Covariant-projection elements do not impose the normal
continuity of H, because it is not generally required: the
pormal continuity of the magnetic flux density arises natu-
rally from the variational principle. However, because of the
divergence term V - H, in the surface integral, it is neces-
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TABLE 1
Bounpary CONDITIONS FOR THE CASE (m, n) = (1, 1)
(r, 8, ¢): 0.03A x 22.5° X 22.5°

Boundary Condition

Prescribed Hj and H, of the (1, 1) function
Absorbing boundary condition
Prescribed H, and H, of the (1,1) function
Electric wall
Electric wall
Magnetic wall

Boundary Surface
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TABLE 11
BounpaRrY CoNDITIONS FOR THE CASE (m, n) = (1, 2)
(r, 0, ¢): 0.03\ x 15° x 18°

Boundary Surface Boundary Condition

r=0.3x Prescribed H, and H, of the (1, 2) function
r=R Absorbing boundary condition

0 =45° Electric wall

6 =90° Magnetic wall

¢ =0° Electric wall

¢ = 90° Magnetic wall

sary to impose normal continuity on H on the surface only.
The second-order results shown next were obtained in this
way.

III. RESULTS

Harrington [7] gives expressions for spherical TE wave
functions, which are exact solutions of Maxwell’s equations
in spherical coordinates. Each function is characterized by
two integers, (m, n); the ¢ variation increases with m and
the 6 variation increases with n. For each (1, n), there are
two functions, one representing an outgoing wave, and one
an incoming wave.

Now consider a boundary-value problem in which H, and
H, on the surface of a sphere are constrained to be as they
are for a spherical wave function (m, n), and outside the
sphere is infinite free space. The solution is a single, outgo-
ing, spherical wave function (m, n).

This boundary-value problem was solved using the finite
element method, and the results compared with the exact
answers. The cases (m, ») = (1, 1) and (m, n) = (1, 2) are
considered here. Both cases are three-dimensional in the
sense that the field varies with r, # and ¢. Because of
symmetry, only sectors of the sphere were modeled; details
are given in Tables I and II. The curvilinear nature of the
clements made them easy to fit to the spherical inner and
outer boundaries (Fig. 1). Note that in the case (1, 1), to
exclude the difficult line 6 = 0, it was necessary to make the
field satisfy the exact solution on & = 3° as well as on
r= 03\

Figs. 2 and 3 show how the error changes as the outer
boundary r = R is moved outwards, for first and second-
order absorbing boundary conditions. The error shown is the
largest value of

e= | Hpgyy — Hepper |

€.
over the volume modeled, expressed as a percentage of
| chact l

Fig. 1.

absorbing boundary
surface

exclitation
surface

Modeling a sector of a sphere with curvilinear bricks. Note the
degenerate brick touching the z axis.
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Fig. 2. Solution error versus R, the radius of the absorbing boundary, for
the case (m, n) = (1, 1).
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Fig. 3. Solution error versus R, the radius of the absorbing boundary, for
the case (m, n) = (1, 2).
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at the point where the largest value of e occurs. Inaccuracies
due to the discretization are estimated to be less than 1%, so
the errors plotted arise almost entirely from the effects of the
absorbing boundary.

CONCLUSION

The graphs show that, compared with the first-order ab-
sorbing boundary condition, the second-order condition gives
errors that are smaller, and decrease faster as the outer
boundary is moved away.

Since the computational cost of the two boundary condi-
tions is almost the same, there can be no doubt that the
second-order form is to be preferred. It allows reasonable
accuracies to be obtained when the outer surface is still quite
near.

Absorbing boundary conditions of order greater than two
were not implemented. Such higher order conditions would
introduce higher order derivatives, altering the sparsity pat-

1]

2]

13]

[4]

(51

[6]

(7

327

tern of the final matrix. Symmetric bilinear forms for orders
greater than two have not been developed.
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